Data collection

CAD-4 MicroVAXcontrolled diffractometer θ / ω scans
Absorption correction:
empirical ψ scan (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.62, T_{\text {max }}=0.69$
3006 measured reflections
2849 independent reflections

2497 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 13$
$l=-16 \rightarrow 15$
3 standard reflections frequency: 120 min intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.087$
$S=1.100$
2849 reflections
235 parameters
H atoms not refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0464 P)^{2}\right.$
$+2.1859 \mathrm{P}]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.662 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\min }=-0.641 \mathrm{e}^{-3}$

Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$

$\mathrm{CrI-O20}$	1.959 (2)	Cal-O23"1	2.481 (2)
Cr --030	1.960 (2)	Cal--032	2.513 (2)
$\mathrm{Crl}-\mathrm{Ol} 0$	1.968 (2)	$\mathrm{CaI}-\mathrm{O} 23{ }^{\prime \prime}$	2.701 (2)
$\mathrm{Cr} 1-\mathrm{O} 33$	1.977 (2)	K1-05	2.696 (3)
$\mathrm{Crl}-\mathrm{O} 22$	1.977 (2)	K1-04	2.774 (3)
$\mathrm{Cri-O12}$	1.978 (2)	$\mathrm{Kl}-\mathrm{O} 2^{\text {i }}$	2.776 (3)
Cal-O2	2.445 (2)	$\mathrm{KI}-\mathrm{O} 13^{\prime \prime}$	2.944 (2)
Cal-031	2.456 (2)	Kı-O30'	3.043 (2)
Cal OI	2.468 (2)	$\mathrm{KI}-\mathrm{O} 22^{\prime}$	$3.301(2)$
Cal-O21"	2.470 (2)		

The structure was solved using the SHELXS86 (Sheldrick, 1990) Patterson heavy-atom method and refined using SHELXL93 (Sheldrick, 1993). H atoms were found in difference maps.

Data collection: SDP (Frenz, 1985). Cell refinement: SDP. Data reduction: Xtal3.0 (Hall \& Stewart, 1990). Molecular graphics: PLATON96 (Spek, 1996). Software used to prepare material for publication: SHELXL93.

The authors wish to thank the Australian Research Council, the University of Queensland and Griffith University for financial support for the purchase of the CAD-4.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TAl140). Services for accessing these data are described at the back of the journal.

References

Bulc, N., Golic, L. \& Siftar, J. (1982). Vestn. Slov. Kem. Drus. 29, 211-225.
Bulc, N., Golic, L. \& Siftar, J. (1985). Vestn. Slov. Kem. Drus. 32, 221-229.
Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.

Hall, S. R. \& Stewart, J. M. (1990). Editors. Xtal3.0 Reference Manual. Universities of Western Australia, Australia, and Maryland, USA.
Merrachi, E.. Mentzen, B. \& Chassagncux, F. (1986). Rev. Chim. Miner. 23, 329-342.
Merrachi, E., Mentzen, B. \& Chassagneux, F. (1987). Rev. Chim. Miner. 24, 427-445.
Niekerk, J. van \& Schoening, F. (1952). Acta Cryst. 5, 499-505.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick. G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1996). PLATON96. Molecular Geometry Program. University of Utrecht, The Netherlands.
Taylor, D. (1978). Aust. J. Chem. 31, 1455-1462.

Acta Cryst. (1997). C53, 1577-1579

[(1,2,5,6- η)-1,5-Cyclooctadiene][(11R,12R)-9,10-dihydro-9,10-ethanoanthracene-11,12-bis(diphenylphosphino-P)]rhodium(I) Tetrafluoroborate

Tai Y. Fu, Zhaoqing Liu, Steven J. Rettig, John R. Scheffer and James Trotter
Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T IZI. E-mail: jtrt@xray4.chem. ubc.ca

(Received 30 January 1997; accepted 7 April 1997)

Abstract

The title compound, $\left[\mathrm{Rh}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{P}_{2}\right)\right] \mathrm{BF}_{4}$, which functions as an asymmetric catalyst, contains a fivemembered chelate ring, and has molecular geometry and dimensions similar to those in related materials.

Comment

The Rh -anthraphos title complex, (I), was prepared for use as an asymmetric catalyst in hydrogenation reactions (Fu, Liu, Scheffer \& Trotter, 1994).

(I)

ISSN 0108-2701 © 1997

The cation contains a five-membered chelate ring (Fig. 1) similar to those in the related Rh complexes of norphos (Kyba, Davis, Juri \& Shirley, 1981) and chiraphos (Ball \& Payne, 1977). The P-C-C-P torsion angle of $-60.4(2)^{\circ}$ in the Rh -anthraphos molecule is between those of the other two compounds, 64 and 52°. The Rh-P bond lengths, mean 2.299 (1) \AA, are similar to those in the other two compounds, means 2.32 and $2.28 \AA$; the $\mathrm{Rh}-\mathrm{P}-\mathrm{C}$ angles in the ring, mean 105.5 (1) ${ }^{\circ}$, are between those of 103° in Rh -norphos and 110° in Rh-chiraphos.

Fig. 1. View of the title molecule (50% ellipsoids). The tetrafluoroborate anion has been omitted.

The chelate ring adopts the λ conformation, and catalytic hydrogenation of (Z)- α-acetamidocinnamide gives N-acetylphenylalanine of S configuration, as predicted (Kagan, 1982), in 90\% enantiomeric excess (Fu et al., 1994).

Experimental

The title compound was synthesized via an ethanoanthracene-11,12-bis(diphenylphosphine oxide); this material was resolved into optically pure enantiomers. Treatment of the $(R, R)-(-)$ enantiomer with trichlorosilane afforded $(R, R)-(+)$-anthraphos [trans-9,10-dihydro-9,10-ethanoanthracene-11,12-bis(diphenylphosphine)]. Reaction of (+)-anthraphos with [Rh(COD)Cl] $]_{2}$, followed by addition of NaBF_{4}, afforded (-)-[$\mathrm{Rh}(\mathrm{COD})(R, R-$ anthraphos) BF_{4}. See supplementary data for further details.

Crystal data

$\left[\mathrm{Rh}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{P}_{2}\right)\right] \mathrm{BF}_{4}$ $M_{r}=872.53$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$

Tetragonal
$P 4$,
$a=10.1580(2) \AA$
$c=39.7543(5) \AA$
$V=4102.05(11) \AA^{3}$
$Z=4$
$D_{x}=1.413 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Cell parameters from 22724 reflections
$\theta=2.0-30.1^{\circ}$
$\mu=0.545 \mathrm{~mm}^{-1}$
$T=180 \mathrm{~K}$
Prism
$0.35 \times 0.30 \times 0.30 \mathrm{~mm}$
Orange

10690 independent reflections (including 4861
sets of Friedel pairs)
9206 reflections with
$I>3 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=30.12^{\circ}$
$h=-12 \rightarrow 13$
$k=-12 \rightarrow 12$
$l=-41 \rightarrow 54$
Intensity decay: none

37526 measured reflections

Refinement

Refinement on F^{2}
$R(F)=0.043$
$w R\left(F^{2}\right)=0.086$
$S=2.51$
10690 reflections
504 parameters
H atoms not refined
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)\right]$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=0.96 \mathrm{e}^{-3}$ (across 4_{1} axis from Rh site)
$\Delta \rho_{\text {min }}=-2.02 \mathrm{e}^{-3}$ (at Rh site)
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

Rhl-P1	$2.3109(8)$	$\mathrm{Pl}-\mathrm{C} 11$	$1.841(3)$
$\mathrm{Rh} 1-\mathrm{P} 2$	$2.2873(7)$	$\mathrm{Pl}-\mathrm{C} 17$	$1.821(3)$
$\mathrm{Rh} 1-\mathrm{C} 41$	$2.260(3)$	$\mathrm{P} 1-\mathrm{C} 23$	$1.819(3)$
$\mathrm{Rh} 1-\mathrm{C} 42$	$2.257(3)$	$\mathrm{P} 2-\mathrm{C} 12$	$1.832(3)$
$\mathrm{Rh} 1-\mathrm{C} 45$	$2.248(3)$	$\mathrm{P} 2-\mathrm{C} 29$	$1.806(3)$
$\mathrm{Rh} 1-\mathrm{C} 46$	$2.236(3)$	$\mathrm{P} 2-\mathrm{C} 35$	$1.816(3)$
$\mathrm{Pl}-\mathrm{Rh} 1-\mathrm{P} 2$	$85.23(3)$		

Cell parameters at 294 K are $a=10.200$ (7) and $c=$ 39.97 (5) \AA. H atoms were placed in calculated sites, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U(\mathrm{H})=1.2 U$ (bonded C). The anisotropic displacement parameters of the F atoms (each treated as a single site) are fairly large (as commonly observed for BF_{4} groups), corresponding to large thermal motion and/or possible (untreated) disorder. The (S, S) enantiomer in space group $P 4_{3}$ gave a significantly higher $w R$ value (0.088).

Data collection: DTCOLLECT (Molecular Structure Corporation, 1997a). Cell refinement: d^{*} TREK (Molecular Structure Corporation, 1997b). Data reduction: TEXSAN (Molecular Structure Corporation, 1997c). Program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992). Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1294). Services for accessing these data are described at the back of the journal.

References

Ball, R. G. \& Payne, N. C. (1977). Inorg. Chem. 16, 1187-1191.
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarciaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Fu, T. Y., Liu, Z., Scheffer, J. R. \& Trotter, J. (1994). Tetrahedron Lett. 35, 7593-7596.
Kagan, H. B. (1982). Comprehensive Organometallic Chemistry, Vol. 5, edited by G. Wilkinson, F. G. A. Stone \& E. W. Abel, ch. 53. New York: Pergamon.
Kyba, E. P., Davis, R. E., Juri, P. N. \& Shirley, K. R. (1981). Inorg. Chem. 20, 3616-3623.
Molecular Structure Corporation (1997a). DTCOLLECT. Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997b). d*TREK. Area Detector Sofiware. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381 , USA.
Molecular Structure Corporation (1997c). TEXSAN. Single Crysial Structure Analysis Software. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Acta Cryst. (1997). C53, 1579-1580

An $\boldsymbol{\eta}^{6}$-Toluene Complex of Neodymium: $\left[\mathrm{Nd}\left(\eta^{6}-\mathrm{C}_{6} \mathbf{H}_{5} \mathrm{CH}_{3}\right)\left(\mathrm{AlCl}_{4}\right)_{3}\right]$

Qiancai Liu, ${ }^{a} \dagger$ Yong-Hua Lin ${ }^{a}$ and Qi Shen ${ }^{b}$
${ }^{a}$ Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Suzhou University, Suzhou 215006, People's Republic of China. E-mail: jqsun@fudan.ac.cn

(Received 20 December 1996; accepted 1 April 1997)

Abstract

The $\mathrm{Nd}^{\text {III }}$ ion in hexa- μ-chloro-1:2 $\kappa^{2} \mathrm{Cl} ; 1: 3 \kappa^{2} \mathrm{Cl} ; 1: 4 \kappa^{2} \mathrm{Cl}$ -hexachloro- $2 \kappa^{2} C l, 3 \kappa^{2} \mathrm{Cl}, 4 \kappa^{2} \mathrm{Cl}-\left[1\left(\eta^{6}\right)\right.$-toluene $]$ trialuminiumneodymium has distorted pentagonal bipyramidal coordination geometry. Five Cl atoms form the equatorial plane, and the toluene ring and the sixth Cl atom occupy the apical sites. The average $\mathrm{Nd}-\mathrm{C}\left(\eta^{6}\right)$ and $\mathrm{Nd}-\mathrm{Cl}$ distances are 2.926 (5) and 2.857 (1) \AA, respectively.

^[\dagger Present address: Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.]

Comment

η^{6}-Arene-lanthanoid complexes have special catalytic properties (Hu, Tian, Shen \& Liang, 1992). We are interested in the chemical behaviour of such complexes when sterically congested ligands are present. During an attempt to synthesize $\left[\mathrm{Nd}\left(\eta^{6}-1,3,5{ }^{-1} \mathrm{BuC}_{6} \mathrm{H}_{3}\right)\left(\mathrm{AlCl}_{4}\right)_{3}\right]$ in toluene solution, the title complex, (I), was isolated instead.

(I)

A molecule of (I) (Fig. 1) consists of one Nd atom, one toluene molecule and three aluminium tetrachloride ions. The coordination number of $\mathrm{Nd}^{\mathrm{III}}$ may be regarded as nine provided that toluene is thought to occupy three vertices of the polyhedron. Alternatively, the coordination polyhedron can be viewed as a distorted pentagonal bipyramid. The equatorial plane comprises five Cl atoms ($\mathrm{Cl} 1, \mathrm{Cl} 2, \mathrm{Cl} 3, \mathrm{Cl} 4$ and Cl 5), with Cl 6 and the centroid of the toluene ring occupying the apical positions. This mode of coordination is similar to those of related $\mathrm{Ln}^{\mathrm{III}}$ compounds (Cotton \& Schwotzer, 1986; Fan, Shen \& Lin, 1989a; Biagini, Lugli \& Millini, 1994) with distorted pentagonal bipyramidal coordination. The equatorial $\mathrm{Nd}-\mathrm{Cl}$ bond lengths are 2.846 (1)2.902 (1) \AA, rather longer than the apical $\mathrm{Nd}-\mathrm{Cl} 6$ distance of $2.799(1) \AA$. Very similar values have been found for the isomorphous and isostructural Sm compound (Fan, Shen \& Lin, 1989b).

Fig. 1. Molecular structure of (I) showing 50\% probability displacement ellipsoids. H atoms have been omitted for clarity.

Experimental

The synthesis of the title compound was conducted under argon by Schlenk techniques. Crystals were obtained by reac-

